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ABSTRACT 

The hexagonal grid based on a partition of the icosahedron has distinct geometrical qualities for the  mapping of 
a  sphere and also presents some indexing difficulties. The  applicability of this grid to  the primitive equations of fluid 
dynamics is demonstrated,  and a finite-difference approximation of these  equations  is proposed. The basic  variables 
are  the mass fluxes from one hexagonal cell t o  the  next  through  their common boundary.  This scheme conserves the 
total mass, the  total momentum, and  the  total kinetic energy of the fluid as well as  the  total -squared vorticity of a 
nondivergent flow. A computational  test was performed using a hexagonal grid to describe space periodic waves on 
a nonrotating plane. The  systematic variation of total kinetic and  potential energy is less than 10-5 after 1,000 time 
steps. 

1. INTRODUCTION 

The choice of a particular  array of points  or  grid for 
representing the flow of a fluid on a sphere is  not a simple 
geometrical problem because  a  spherical grid should sat.isfy 
many conflicting requirement,s. Basically, the grid should 
be as uniform as possible and  should preserve as well as 
possible the  isotropy of the sphere  around any point. 

A satisfactory grid can  be  obtained by mapping the 
sphere  onto a regular icosahedron. The basic grid cell is 
hexagonal so that all grid  points are  surrounded  by six 
almost  equidistant  neighbors, except for 12 vertices of the 
icosahedron which have only five neighbors. The resulting 
hexagonal  grid (fig. 1) is  remarkably uniform and  has no 
very  singular  point like the Poles of a Mercator  grid. But 
the hexagonal  grid does not allow readily the representa- 
tion of the flow in  terms of zonal and meridional velocity. 
Indeed,  the  very  concept of zonal or meridional flow is  lost 
here: a “zonal”  component of a vector field traced con- 
tinuously  from cell to cell around  one  vertex is found to 
turn  gradually toward the “meridional”  direction (fig. 2). 
This  property is not  just a feature of the hexagonal grid 
but a basic property of any  mapping of a  curved (spherical) 
surface  onto a plane. To  get  around  this difficulty, we  will 
basically represent  the  spherical flow by mass $uxes be- 
tween adjacent  grid cells. The use of mass fluxes rather 
than velocity components as the  fundamental variables is 
actually  implicit in  most space-differencing schemes for 
numerical  integration of the  primitive fluid dynamics 
equations. Bryan (1966) showed under  very  general geo- 
metrical  conditions that flux-form difference schemes con- 
serve  exactly total  momentum and total kinetic energy 
integrated over the whole sphere,  a necessary condition to 
prevent  nonlinear  instability of the  iteration process 
(Lilly, 1965). Such  conservative schemes are now cur- 
rently used in  numerical  weather  prediction  (Kurihara, 
1965; Kurihara  and Holloway, 1967). 

Furthermore,  Arakawa (1966) showed that one  par- 
ticular space-differencing scheme, based on a square grid, 
conserves total momentum,  total  kinetic energy, and also 
the  integral of the  square of the  vorticity  for  nondivergent 
flow and  thereby does not produce  spurious flow of kinetic 
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energy from  the cyclone scale toward  very long or short 
wavelengths. 

The high degree of isotropy of the hexagonal  grid makes 
the formulation of an energy- and vorticity-conserving 
scheme simpler, in  fact,  than for rectangular  grids, as 
shown by Sadourny,  Arakawa,  and  Mintz (1968) for  non- 
divergent  barotropic flow. 

In  the present work, the space-differencing (advection) 
scheme is  first  derived in  the case of nondivergent flow 
(section 2);  the  exact conservation of total  momentum 
kinetic energy and  squared  vorticity  is  proved. A consis- 
tent definition of the divergence operator  is  then  introduced 
(section 3) ,  and a complete finite-diff erence formulation of 
the primitive  dynamic  equations is presented for two- 
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FIGURE 1.-Representation of a 362-point hexagonal grid. 
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FIQURE 2.-Loca.l orientation of maas fluxes around a pentagon  on 
the spherical grid. 

dimensional divergent flow on a  plane. A simple applica- 
tion to a  barotropic flow with  a  free  surface  is worked out 
in section 4, and  results of a  test  computation  are 
discussed. 

The modification of the  algorithm for pentagonal ver- 
tices and,  in general, the problem of sphericity  corrections 
in  the expression of space  derivatives  is  not discussed here 
and will be  the  subject of a later communication. 

2. PRIMITIVE  DYNAMIC  EQUATION 
FOR NONDIVERGENT FLOW 

The geometry of the hexagonal  grid on a  sphere  and the 
indexing convention used for  sample  computations  have 
been described by Sadourny,  Arakawa,  and  Mintz (1968). 
For convenience, we shall now introduce  a new indexing 
convention  more  suitable for  mathematical  developments. 
If the index 0 is given to one  particular grid point chosen 
as origin, the indices (l), (a), (a2) , . . . , (a6) designate 
the six neighbors; a is the complex number exp(i~/3).  We 
shall use the following relations: 

alL(YO=l, 
a3= - 1, 
a f = a f + l + a f - l .  (1) 

Figure 3 shows how this  convention  can  be  applied to  any 
nonsingular  sample of the hexagonal grid. It can  be 
readily  extended to the surrounding cells in a  consistent 
manner, i.e., the  points  around grid point (a) are desig- 
nated  by indices ,(a+l), (a+a), (a+az), . . . 1 b+a5). 

Any  grid-point  index (a) is  then  a  linear  combination,  with 
real integer coefficients, of the indices 1, a, . . . , a5. 

The flow velocity  is to lie defined by mass fluxes be- 
tween all  pairs of neighboring grid  points, (a) and 
for example. The middle of arc (a, a+ai) will be desig- 

nated  by  the half-integer index (a+$) so that  the flux 

crossing this  arc is 

F(a, a+&) =dh (a+%) u (a+%) 

where h is  the  density  (or  the  height of the fluid in  the 

FIGURE 3.-Indexing convention for the hexagonal grid. 

between point (a) and point (a+ai); u is  then  the compo- 
nent of the flow velocity perpendicular to  the  arc of great 
circle (a, a+a‘). The velocity field is thus defined on a 
staggered array  by  three components ul, .uz, and u3 along 
the axis Ox,, 0x2, Ox3 perpendicular to  the sides of the 
triangular cells  (fig. 4). 

For simplicity, we discuss in  the  present article  only the 
cas6 of a  regular hexagonal grid made of equal,  equilateral 
triangles. The three axes lie  then along the directions 0, 
2 ~ 1 3 ,  and 4 ~ 1 3 ,  and  the following identities  obtain 

This  leads to a reasonable definition for  the kinetic 
energy K: 

3 

a i = l  

where s is the  area of the hexagonal cell. Note  that  the 
sum of all overlapping hexagons is 3 times the area covered 
by  the grid (hence the  factor g). Similarly, the momentum 
in  the direction 02, perpendicular to  the grid side (a, 
a+af) is then 

The mean  value of the flow vorticity { in  a cell can be 
expressed by  the circulation of the flow velocity around it 
divided by  the cell area. For consistency, we  choose here 
a smaller hexagonal cell depicted in figure 5, and  the 
following finite-difference approximation  obtains 

Consider now the  fundamental  equation of fluid dy- 
namics or more precisely the  contribution of horizontal 
advection to the  Eulerian  time  derivative: 

case of a  divergent  barotropic flow> and d is the  distance where u is  the velocity  component along a given direction, 
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FIGURE 4.-Locations for wind  components. 

and  the  vertical advection, Coriolis acceleration, and 
source  terms are neglected for the time being. For non- 
divergent $ow, h is constant  and one may  introduce a 
stream  function $ such that 

k X h  V=V$ 
and 

F(a,a+at) =$(a+af) --$(a). (8) 

Expressing (7) in  terms of the  stream  function, +, it fol- 
lows that 

d(hu)/at=J(u,$). (9) 

J(u,$) is the  Jacobian  operator applied to  the scalar fields 
u and $. This  last relation is formally  identical to the baro- 
tropic  vorticity  equation  treated by Sadourny,  Arakawa, 
and  Mintz (1968). We shall,  therefore, use the same finite- 
difference approximation J* for the  Jacobian  operator, i.e., 

a(hu)/at= J* (u,+) ( 10) 
and 

J * b ,  $)=SF [u(b)+u(b+~31[$(b+al+')-+(b+aJ-31, 
1 

(114 
or  the  equivalent  form 

J*(U,'$)=2g~U(b+a3[$.b+a'+')-+(b+aJ-l)1. 1 

(1lb) 

Note  that  the field u is defined a t  half-integer points 
b=u+- (see fig. S ) ,  whereas the  stream function  is 

defined at  normal  grid  points (a+a'). We shall come back 
to this difficulty later. This finite-difference advection 
operator conserves exactly the  total  momentum (5), as 
can  be seen with the help of equations (10) and (I la)  : 

ai 
2 

" hu(b) at 3 b at 

FIGURE B.-Reprasentation of vorticity at a  grid point. 

The first  bracket is symmetrical  with  respect  to  the  inter- 
change of indices (b)  and @+a$). The second bracket is 
antisymmetrical  since  the  same flux across arc (b+al", 
b + d + ' )  appears  in  the expression of J* (b+uj)  but  in  the 
reverse  direction (fig. 7). Thus,  the  sum  on  the  right-hand 
side of equation (12) cancels exactly  with  periodic bound- 
ary conditions or  on a closed surface: 

ap/at=o. 
A  similar  argument shows for  each of the  three  directions 
Oxi that  the contribution of ut components to  the  total 
kinetic  energy is also conserved exactly. We  get  from 
equations (4),  (lo), and ( l l b ) :  

=- 7, [ ~ ( b )   . ~ ( b + ~ 3 ] [ ~ ( b + ~ ~ ~ ' ) - + ( b + ~ " l > ] .  (13) 2s 
9 b  j 

Again, the first bracket  is  symmetrical  with  respect  to 
(b)  and @+CY'), and  the  sum on the  right-hand  side 
cancels exactly in a closed domain. The  total  kinetic 
energy  is thus exactly conserved by  the  advection  scheme 
(11): 

aK/at=o. 
These  properties are common to all space-differencing 

schemes expressed in  momentum flux divergence form 
(Bryan, 1966). We  shall show that  the  total  squared vor- 
ticity of the flow is also conserved in  the case of nondi- 
vergent  barotropic flow. In  fact it is sufficient to  show  that 
in that case equation (10) is  equivalent  to  the  finite- 
difference vorticity  equation 

ar(a)/at=J*(r,$). (14) 

Indeed, using expression (6) of the  vorticity  together  with 
equation (IO), we get 

-$(a+;+CY"l)l. (15) 
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FIGURE 6.-Wind components used in the momentum advection 
scheme. , .  

FIGURE 7.-Antisymmetry of the flux between (b )  and ( b f  a'). 

In  this  equation,  the  values of the  stream  function at  
half-integer points  must  be  interpolated from the neighbor- 
ing  grid  points, viz : 

where the definitions ( 2 )  and (8) have been used. Thus, 

Note  that  the second term  on  the  right-hand side is 
exactly 

Each  term J*(u,u) cancels exactly; hence, equation (15) 
reduces to 

We  have  introduced  a finite-difference approximation of 
the  momentum flux divergence term V- (huV) of the 
primitive  dynamic  equation. The flux form insures the 
conservation of the  total  momentum  and kinetic  energy. 

This differencing scheme involves  equally the six nearest 
points where the same  components of the velocity are 
defined. By summing the six u-components  u a+- 

around grid point (a), we find that  the  same advection 
scheme also applies to  the circulation  around grid points 
(vorticity).  This scheme is, therefore,  consistent  with the 
particular  form of the  barotropic  vorticity  equation 
studied  by  Sadourny,  Arakawa,  and  Mintz (1968); this 
form conserves exactly the  total  vorticity  and  squared 
vorticity of a  nondivergent flow. 

( 3 

3. DIVERGENT FLOW 
Let us consider now a  simple  barotropic flow with a 

free  surface, and  let h be the  variable  depth of the (in- 
compressible) fluid. The  continuity  equation  and  the 
equation of motion along a given direction are 

ah -+v* (hV) =o a t  (18) 

and 

The momentum  advection  algorithm developed in  the 
previous section is not  yet  in a  generally  usable form 
since the  stream  function  still  appears  in  equations (10) 
and (11). For a more  general flow, we shall  introduce 
instead  the  corresponding  mass flux (dashed  segment in 
fig. 8). Thus, 

The mass fluxes are only defined normally across triangle . 
sides. The  interpolation formula to give mass flux along 
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FIGURE 8.-Representation of a mass flux used in  momentum ad- 
vection  scheme. 

the  dashed  line  in figure 8 is  found to be  the  mean value 
of the four fluxes across the  heavy lines of figure 8, viz: 

=y@ya+CYj-', a)+F(a,a+aj+l) 

+F(a+aj-', a+aj)+F(a+aj, .+aj+') 

+F(a+ai+aj-', a+a"+F(a+ai, a+ai+aj+l) 

+F(a+ai+a"l, a+af+a3 

+F(a+a"aj, a+af+a'++l)]. (21) 

In this form, the advection  term  is  still defined as the 
divergence of a mass j u x ,  and  the  conservation of total 
momentum  obtains even when the  depth h is  variable. 
Concerning  the conservation of kinetic  energy, we derive 
from  equations (4), (IO), and (20) the relation 

We  have seen in  section 2 that  the second sum on the 
right-hand  side of equation (22) cancels  exactly. Conse- 
quently,  the  total kinetic  energy will be conserved if and 
only if  we use the following finite-difference approxima- 
tion of the  continuity  equation: 

In  fact,  the height h is normally defined at integer  grid 
points only. Using linear interpolation  to define its value 

at  half-integer points 

- (a) =- F(a+aj-l, a+a-lf'). ah 1 6  
at S j = 1  

To  be consistent  with  equation (21), we shall  replace the 
fluxes on  the right-hand side of (23) by linear  combinations, 

F(a+aj-', a+arf+')=+[F(a+a"', a) +F(a, a+&+') 
+F(a+d", a+al> +F(a+aj, a+aj+')]. (24) 

We  note, however, that.  the fluxes through  the  radial 
segments (F(a,a + a') cancel; the  sum on the right-hand 
side of equation  (23)-reduces  finally to 

The consistent finite-difference approximation of the di- 
vergence of the flow is,  therefore, the  total  mass flux 
through  the sides of the  hexagonal side (fig. 9) divided 
by  the surface of the cell. 

Next we have  to consider the exchange between kinetic 
and  potential  energy,  and specify the finite-difference ap- 
proximation of the pressure gradient so that  total  energy 
will be conserved. From equation (25), the  elementary 
flux F(a + a5, a + acts  upon  two  height  tendencies 
in the following manner: F(a + ai, a + aj+l) is  added 

ah(a) and  subtracted  from s to s- ah(a+aj+a"fl) 
at  at 

Its  contribution to the  total  potential energy  tendency 
is thus: 

"h (~+c~'+af+')].  

This term  can also be  understood  as the  contribution of 

the pressure gradient a t  point 

kinetic  energy  tendency at  the  same point, if the  gradient 

term  in  equation (19) is written  at  point (a+&-) 
in  the following manner: 

(.+-) aj+aj+I to the 

With this  definition, the scheme enforces the  exchange 
between potential  and  kinetic  energy  without loss. 

4. COMPUTATIONAL TEST 

As a  test case, we have chosen to  integrate equations 
(18) and (19) for divergent barotropic flow to simulate 
the propagation and multiple reflexions of periodic gravity 
waves in a channel. The channel can  be pictured as  an 
equatorial  belt  around  a  nonrotating  planet  (the Coriolis 
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FIQURE g.-Representation of divergence at a grid point. 

acceleration is  omitted for the time  being). The  north 
and  south boundaries .are perfect walls without  friction 
(free slip boundary).  The waves propagate  in  the  east- 
west direction. The computational  test was carried out 
in one section of the channel  only,  and periodic boundary 
conditions on the  east  and west boundaries were assumed, 
thereby enforcing an exact  space periodicity. 

The application of the differencing scheme is straight- 
forward where the  freeslip  boundary condition is intro- 
duced  properly, i.e., in a  way  consistent  with the conserva- 
tion of all  integral  constraints. In  view of the geometry of 
the grid and  the definition of the basic F fluxes, the 
boundary  must  be  taken  on a polygonal line as shown 
in figure 10. If so, two different classes of boundary fluxes 
appear  in  the  computation: 

1) Flux 'parallel to  the  boundary defined at  a  point 

a+- of the  boundary. All such fluxes are included 

as  dependent  variable  and  actually  computed on each 
time step according to  the general scheme (2 1). 

2) Flux perpendicular to  the  boundary  defked  at a 

point (a+:) of the  boundary. All such fluxes are  set 

equal to zero. 
Needless to  say, all fluxes defined on the  other side of 

the  boundary  are also set equal to zero. These specifi- 
cations,  therefore, add  up  to  the elimination of any inflow 
or outflow of mass,  momentum,  and kinetic energy across 
the boundary. 

( 3 

EXPERIMENT A 

This test was carried out on  a  square  domain including 
10 by 10 hexagonal cells and  the  same  number of grid 
points. The grid size d was chosen equal to 100 km. The 
fluid was assumed to  be  initially at  rest (V=O) with  a 
wavy  surface defined by the field (unit:  meter), 

h(z, 7~)=104+~0~~sin--+300~sin--.  rry 2n-x 
L L 

The initial  energy of the  system is thus purely  potential 
energy. The subsequent  integration of the  equations of 

FIGURE lO.-Boundary of the grid in the channel case. 

motions will show a quasi-periodic interchange  between 
potential  and  kinetic  energy Corresponding to the 
propagation and reflexion of these waves. 

Because the  test is intended  to  verify  the  conservation 
of energy, the use of a nonamplifying time-differencing 
scheme is  mandatory.  Time  integration was, therefore, 
carried out with  the  centered or "leapfrog" scheme: 

except, of course,  for the first time  step for which the 
Euler-backward or Matsuno scheme was used: 

rand 

The problem of the one-dimensional free  surface flow 
corresponding to this  situation  is solved by introducing 
characteristic  lines  with slopes 

dxJdt=ufJgfE. 

The  stability  criterium for time  integration is thus: 

Ax 
At<lu*@/. 

Here Ax is lo5 m, JgfE is about 300 m sec", and  the 
mean flow velocity can  be neglected. The  stability 
criterium is then 

At<300 sec. 

Time  steps of 240 sec were actually used. 

EXPERIMENT B 

Experiment B differs from  experiment A by the size 
of the domain, the  initial  state,  and a  more refined 
starting procedure. The domain considered here  includes 
20 by 20 grid  points  with  the  same grid size d: 100 km. 
The initial state is defined by the field values 
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KINETIC  ENERGY t POTENTIAL  ENERGY 
(RELATIVE  VARIATION) 

FIGURE 11.-Behavior of total kinetic  energy with time. 
~~ 

FIGURE 12.-Variation of total energy. 

h(z,y)=104+103Xsin-Xsin -++OOXsin “ X s i n  __ 7# 2TX 27# 4Tx 
L L L L 

and 
V(x,y) =o. 

The first  time-integration step was performed according 
to a  more  accurate, second-order approximation con- 
sisting in : 

a  forward  integration  from t=O to t=X 

a  Euler-backward  step  from t = s  to t =  1 
and 

when  applied  to  sinusoidal  solutions of equation 
dxldt=iwx. This second-order scheme has  an amplifica- 
tion coefficient which is very close to 1, 

RESULT 

In both cases, the  integration of the  equations of motion 
indicates a quasi-periodic exchange between  kinetic and 
potential energy corresponding to the  propagation  and 
reflection of the large-scale (order L) waves. The model 
does not include any dissipation process and, consequently, 
nonlinear  interaction between the  spectral  components 
represented by  the grid produces a steadily  growing 
high-frequency  spectrum.  Although the  total kinetic 
energy  peaks are  remarkably  constant  after  several  days, 
the large-scale oscillation amplitude decreases signifi- 
cantly; whereas, the high-frequency kinetic energy 
(appearing  as a practically constant “noise”)  increases 
by a corresponding amount (fig. 11). 

The  total mass  is  exactly conserved except  for sys- 
tematic  truncation  errors  due  to  the  computer  system; 
the  truncation  errors  produce a slight  linear  mass loss 
which amounts  to 1 0 - ~  after 1,000 time  steps. 

The variation of total  (kinetic+potential)  energy  is 
shown in figure 12. Curve A is drawn using values com- 
puted every 25 time  steps  without  smoothing  to  remove 
the high-frequency oscillation characteristic of the 
centered time-differencing scheme. This smoothing was 
done for curve B. The systematic  variation of total 
energy  appears to  be somewhat less than  in 1,000 
time  steps. 

ACKNOWLEDGMENTS 

The basic formulation used here  is  inspired by the work of A. 
Arakawa. We want  to express our gratitude  for his very helpful 
comments and suggestions. We are also much  indebted to  the 
Centre National d’Etudes Spatiales of France  for  computing 
facilities. We acknowledge here the good will of the C.N.E.S. 
computing center personnel. 

REFERENCES 

Arakawa, A., “Computational Design for Long-Term Numerical 
Integration of the  Equations of Fluid  Motion:  Two Dimen- 
sional Incompressible Flow Part I.,” Journal of Computational 
Physics, Vol. 1, No. 1, Academic Press, New York, Aug. 1966, 

Bryan, K., “A Scheme for Numerical Integration of the  Equations 
of Motion on an Irregular Grid Free of Nonlinear Instability,” 
Monthly Weather Review, Vol.  94, No. 1, Jan. 1966,  pp. 39-40. 

Kurihara, Y., “Numerical Integration of the  Primitive  Equations 
on a Spherical Grid,” Monthly Weather Review, Vol. 93, No. 7, 

Kurihara, Y., and Holloway, J. L., Jr., “Numerical Integration of 
a Nine-Level Global Primitive Equations Model Formulated 
by the Box Method,” Monthly  Weather Review, Vol. 95,  No. 8, 

Lilly, D. K., “On the Computational Stability of Numerical 
Solutions of Time-Dependent Non-Linear Geophysical Fluid 
Dynamics.  Problems,” Monthly Weather  Review, Vol.  93,  No. 1, 
Jan. 1965, pp. 11-26. 

Sadourny, R., Arakawa, A., and Minta, Y., “Integration of the 
Nondivergent  Barotropic Vorticity Equation  With  an Ico- 
sahedral-Hexagonal Grid for  the Sphere,” Monthly  Weather 
Review, Vol. 96, No. 6, June 1968, pp. 351-356. 

pp. 119-143. 

July 1965, pp. 399-415. 

Aug. 1967, pp. 509-530. 

[Received  September 9, 1968; revised October 2?8, 19681 

, 


